Origen del perfil de mutaciones presente en las secuencias de SARS-CoV-2 en El Salvador
Palabras clave:
SARS-CoV-2, D614G, NGS, 2019-nCoV, COVID-19sResumen
Introducción: en el presente trabajo se describe el perfil de mutación y se analizan los distintos mecanismos responsables de las mutaciones en las primeras 6 secuencias completas del genoma de SARS-CoV-2 a partir de muestras de pacientes salvadoreños con diagnóstico de COVID-19. Objetivo: analizar el perfil de mutaciones de acuerdo a los mecanismos que dan origen a las mutaciones presentes en SARS-CoV-2. Metodología: se realizó un análisis de los cambios en las secuencias del genoma de SARS-CoV-2 utilizando como referencia la secuencia Wuhan (NC_045512.2), una vez conocidas las mutaciones, se procedió a tabular y generar gráficos de los SNPs y los genes afectados, además se analizaron los posibles mecanismos descritos responsables de generar las mutaciones estudiadas. Resultados: el análisis reveló que las mutaciones encontradas han sido reportadas a nivel mundial, sin embargo, las secuencias presentan mayor semejanza con los cambios descritos en Norteamérica, sumado a ello, el análisis global permitió clasificarlas en el caldo GISAID GH, y linaje pangolín B.1.2 y B.1.370, ambos linajes con una alta prevalencia en EUA, lo cual refuerza la hipótesis del origen norteamericano de las secuencias salvadoreñas. El patrón de cambios del genoma de SARS-CoV-2 en El Salvador, sugiere que las mutaciones son debidas a la acción de las desaminasas APOBEC (transición C>T) y ADARs (transición A>G), al efecto de especies reactivas de oxígeno (ROS) (transversión G>T), a errores propios del complejo replicación transcripción (RTC) que escapan a la corrección de la actividad exonucleasa de NSP14 y finalmente mutaciones como resultado de mecanismos de recombinación
Descargas
Referencias
Alouane, T., Laamarti, M., Essabbar, A., Hakmi, M., Bendani, H., Laamarti, R., Ghrifi, F., Allam, L., Aanniz, T., Mentag, R., Sbabou, L., Nejjari, C., Amzazi, S., & Belyamani, L. (2020). SARS-CoV-2 Genomes: Moving Toward a Universal Vaccine for the “ Confined Virus ”? 1–19.
Angelini, M. M., Akhlaghpour, M., Neuman, B. W., & Buchmeier, M. J. (2013). Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles. MBio, 4(4), 1–10. https://doi.org/10.1128/mBio.00524- 13
Becares, M., Pascual-iglesias, A., Nogales, A., Sola, I., Enjuanes, L., & Zuñiga, S. (2016). Mutagenesis of Coronavirus nsp14 Reveals Its Potential Role in. Journal of Virology, 90(11), 5399–5414. https://doi. org/10.1128/JVI.03259-15.Editor
Brufsky, A. (2020). Distinct viral clades of SARSCoV- 2: Implications for modeling of viral spread. Journal of Medical Virology, 92(9), 1386–1390. https://doi.org/10.1002/ jmv.25902
Case, J. B., Ashbrook, A. W., Dermody, T. S., & Denison, M. R. (2016). Mutagenesis of S -Adenosyl-l-Methionine-Binding Residues in Coronavirus nsp14 N7- Methyltransferase Demonstrates Differing Requirements for Genome Translation and Resistance to Innate Immunity . Journal of Virology, 90(16), 7248–7256. https://doi.org/10.1128/ jvi.00542-16
Chen, Y., Cai, H., Pan, J., Xiang, N., Tien, P., Ahola, T., & Guo, D. (2009). Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3484–3489. https://doi.org/10.1073/ pnas.0808790106
Chen, Y., Liu, Q., & Guo, D. (2020). Emerging coronaviruses: Genome structure, replication, and pathogenesis. Journal of Medical Virology, 92(4), 418–423. https://doi.org/10.1002/jmv.25681
Di Giorgio, S., Martignano, F., Torcia, M. G., Mattiuz, G., & Conticello, S. G. (2020). Evidence for host-dependent RNA editing in the transcriptome of SARSCoV- 2. BioRxiv, June, 1–8. https://doi. org/10.1101/2020.03.02.973255
Eisenberg, E., & Levanon, E. Y. (2018). A-to-I RNA editing—Immune protector and transcriptome diversifier. Nature Reviews Genetics, 19(8), 473–490. https:// doi.org/10.1038/s41576-018-0006-1 Ferron, F., Subissi, L., De Morais, A. T. S., Le, N. T. T., Sevajol, M., Gluais, L., Decroly, E., Vonrhein, C., Bricogne, G., Canard, B., & Imbert, I. (2017). Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA. Proceedings of the National Academy of Sciences of the United States of America, 115(2), E162–E171. https://doi.org/10.1073/pnas.1718806115
Gorbalenya, A. E., Baker, S. C., Baric, R. S., de Groot, R. J., Drosten, C., Gulyaeva, A. A., Haagmans, B. L., Lauber, C., Leontovich, A. M., Neuman, B. W., Penzar, D., Perlman, S., Poon, L. L. M., Samborskiy, D. V., Sidorov, I. A., Sola, I., & Ziebuhr, J. (2020). The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology, 5(4), 536–544. https://doi. org/10.1038/s41564-020-0695-z
Gorbalenya, A. E., Enjuanes, L., Ziebuhr, J., & Snijder, E. J. (2006). Nidovirales: Evolving the largest RNA virus genome. Virus Research, 117(1), 17–37. https://doi. org/10.1016/j.virusres.2006.01.017
Gribble, J., Stevens, L. J., Agostini, M. L., Anderson-Daniels, J., Chappell, J. D., Lu, X., Pruijssers, A. J., Routh, A. L., & Denison, M. R. (2021). The coronavirus proofreading exoribonuclease mediates extensive viral recombination. PLoS Pathogens, 17(1), 1–28. https://doi. org/10.1371/journal.ppat.1009226
Harris, R. S., & Dudley, J. P. (2015). APOBECs and virus restriction. Virology, 479– 480, 131–145. https://doi.org/10.1016/j. virol.2015.03.012
Hernandez Avila, C. E., Ortega Perez, C. A., Rivera, N. R., & López, X. S. (2021). Primeras seis secuencias del genoma completo de SARS-CoV-2 por NGS en El Salvador. Alerta, Revista Científica Del Instituto Nacional de Salud, 4(1), 61–66. https:// doi.org/10.5377/alerta.v4i1.10682
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497–506. https://doi. org/10.1016/S0140-6736(20)30183-5
Kuljić-Kapulica, N., & Budisin, A. (1992). Coronaviruses. Srpski Arhiv Za Celokupno Lekarstvo, 120(7–8), 215–218. https://doi.org/10.4161/rna.8.2.15013
Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., … Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. The Lancet, 395(10224), 565–574. https://doi. org/10.1016/S0140-6736(20)30251-8
Mercatelli, D., & Giorgi, F. M. (2020). Geographic and Genomic Distribution of SARSCoV- 2 Mutations. Frontiers in Microbiology, 11(July), 1–13. https://doi. org/10.3389/fmicb.2020.01800
Niocel, M., Appourchaux, R., Nguyen, X. N., Delpeuch, M., & Cimarelli, A. (2019). The DNA damage induced by the Cytosine Deaminase APOBEC3A Leads to the production of ROS. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598- 019-40941-8
Perlman, S., & Netland, J. (2009). Coronaviruses post-SARS: Update on replication and pathogenesis. Nature Reviews Microbiology, 7(6), 439–450. https://doi. org/10.1038/nrmicro2147
Phuphuakrat, A., Kraiwong, R., Boonarkart, C., Lauhakirti, D., Lee, T.-H., & Auewarakul, P. (2008). Double-Stranded RNA Adenosine Deaminases Enhance Expression of Human Immunodeficiency Virus Type 1 Proteins. Journal of Virology, 82(21), 10864–10872. https://doi.org/10.1128/ jvi.00238-08
Pollpeter, D., Parsons, M., Sobala, A. E., Coxhead, S., Lang, R. D., Bruns, A. M., Papaioannou, S., McDonnell, J. M., Apolonia, L., Chowdhury, J. A., Horvath, C. M., & Malim, M. H. (2018). Deep sequencing of HIV-1 reverse transcripts reveals the multifaceted antiviral functions of APOBEC3G. Nature Microbiology, 3(2), 220–233. https://doi.org/10.1038/s41564-017-0063-9
Saberi, A., Gulyaeva, A. A., Brubacher, J. L., Newmark, P. A., & Gorbalenya, A. E. (2018). A planarian nidovirus expands the limits of RNA genome size. In PLoS Pathogens (Vol. 14, Issue 11). https://doi. org/10.1371/journal.ppat.1007314
Salter, J. D., & Smith, H. C. (2018). Modeling the Embrace of a Mutator: APOBEC Selection of Nucleic Acid Ligands. Trends in Biochemical Sciences, 43(8), 606–622. https://doi.org/10.1016/j.tibs.2018.04.013
Smith, E. C., & Denison, M. R. (2012). Implications of altered replication fidelity on the evolution and pathogenesis of coronaviruses. Current Opinion in Virology, 2(5), 519–524. https://doi. org/10.1016/j.coviro.2012.07.005
Snijder, E. J., Limpens, R. W. A. L., de Wilde, A. H., de Jong, A. W. M., Zevenhoven-Dobbe, J. C., Maier, H. J., Faas, F. F. G. A., Koster, A. J., & Bárcena, M. (2020). A unifying structural and functional model of the coronavirus replication organelle: Tracking down RNA synthesis. PLoS Biology, 18(6), 1–25. https://doi.org/10.1371/ journal.pbio.3000715
Sola, I., Almazán, F., Zúñiga, S., & Enjuanes, L. (2015). Continuous and Discontinuous RNA Synthesis in Coronaviruses. Annual Review of Virology, 2, 265– 288. https://doi.org/10.1146/annurevvirology- 100114-055218
Sola, I., Mateos-Gomez, P. A., Almazan, F., Zuñiga, S., & Enjuanes, L. (2011). RNA-RNA and RNA-protein interactions in coronavirus replication and transcription. RNA Biology, 8(2), 237–248. https://doi. org/10.4161/rna.8.2.14991
Subissi, L., Imbert, I., Ferron, F., Collet, A., Coutard, B., Decroly, E., & Canard, B. (2014). SARSCoV ORF1b-encoded nonstructural proteins 12-16: Replicative enzymes as antiviral targets. Antiviral Research, 101(1), 122–130. https://doi.org/10.1016/j. antiviral.2013.11.006
Tagliamonte, M. S., Abid, N., Borocci, S., Sangiovanni, E., Ostrov, D. A., Kosakovsky Pond, S. L., Salemi, M., Chillemi, G., & Mavian, C. (2021). Multiple recombination events and strong purifying selection at the origin of SARS-CoV-2 spike glycoprotein increased correlated dynamic movements. International Journal of Molecular Sciences, 22(1), 1–16. https://doi.org/10.3390/ijms22010080
Taylor, D. R., Puig, M., Darnell, M. E. R., Mihalik, K., & Feinstone, S. M. (2005). New Antiviral Pathway That Mediates Hepatitis C Virus Replicon Interferon Sensitivity through ADAR1. Journal of Virology, 79(10), 6291–6298. https://doi.org/10.1128/ jvi.79.10.6291-6298.2005
Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong, W., Wang, Y., Wang, Q., Xu, Y., Li, M., Li, X., Zheng, M., Chen, L., & Li, H. (2020). Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica B, 10(5), 766–788. https://doi.org/10.1016/j. apsb.2020.02.008
Zahn, R. C., Schelp, I., Utermöhlen, O., & von Laer, D. (2007). A-to-G Hypermutation in the Genome of Lymphocytic Choriomeningitis Virus. Journal of Virology, 81(2), 457–464. https://doi. org/10.1128/jvi.00067-06
Zhao, S., & Chen, H. (2020). Modeling the epidemic dynamics and control of COVID-19 outbreak in China. MedRxiv, 1–9. https:// doi.org/10.1101/2020.02.27.20028639
Zhou, P., Yang, X. Lou, Wang, X. G., Hu, B., Zhang, L., Zhang, W., Si, H. R., Zhu, Y., Li, B., Huang, C. L., Chen, H. D., Chen, J., Luo, Y., Guo, H., Jiang, R. Di, Liu, M. Q., Chen, Y., Shen, X. R., Wang, X., … Shi, Z. L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi. org/10.1038/s41586-020-2012-7
Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W. (2020). A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine, 382(8), 727–733. https://doi.org/10.1056/nejmoa2001017
Descargas
Publicado
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.