Influence of the ratio “porosity-generating agent versus sol” on the adsorption capacity of hydroxyapatite-based materials (HAp) to remove Cd2+ dissolved in water

Authors

Keywords:

hydroxyapatite, water decontamination, toxic metals, adsorption process

Abstract

Water contamination by toxic metals is one of the main environmental problems. Decontamination can be achieved through the adsorption method, which has technical and economic advantages for industrial applications. This work investigates the synthesis of hydroxyapatite-based materials using food industry waste as raw material. The application for example as adsorbents for toxic metals dissolved in water was also studied. To analyze the physical and chemical properties the materials were characterized by N2 adsorption isotherms and XRD. It was found that the ratio between the amount of porosity-generating agent and the amount of sol (Sol. C) influences the properties of the synthesized materials (i.e. surface area, pore volume, chemical composition). Materials synthesized from mollusk shells showed good adsorption capacity (≈ 70%), and those synthesized from eggshells also achieved high adsorption percentages (≈ 95%), particularly at short residence times. Solid materials with the best adsorption capacities were synthesized from porosity-generating agent to sol ratios of 0.25-0.50. A synergy between physical and chemical properties, crucial for the efficiency of the adsorption process, was determined.

Downloads

Download data is not yet available.

Author Biographies

  • José Galicia-Ayala, Universidad de El Salvador

    Escuela de Química, Facultad de Ciencias Naturales y Matemática

  • José Alfredo Díaz, Universidad de El Salvador

    Escuela de Química, Facultad de Ciencias Naturales y Matemática

  • Marvin Chávez Sifontes, Universidad de El Salvador

    Escuela de Química, Facultad de Ciencias Naturales y Matemática

References

Anastopoulos, I., Pashalidis, I., Hosseini-Bandegharaei, A., Giannakoudakis, D. A., Robalds, A., Usman, M., Escudero, L. B., Zhou, Y., Colmenares, J. C., Núñez-Delgado, A., & Lima, É. C. (2019). Agricultural biomass/waste as adsorbents for toxic metal decontamination of aqueous solutions. Journal of Molecular Liquids, 295. https://doi.org/10.1016/j.molliq.2019.111684

Chen, S. B., Ma, Y. B., Chen, L., & Xian, K. (2010). Adsorption of aqueous Cd2+, Pb2+, Cu2+ ions by nano-hydroxyapatite: Single and multi-metal competitive adsorption study. Geochemical Journal, 44(3), 233–239. https:// doi.org/10.2343/geochemj.1.0065

da Rocha, M. P., Dourado, P. L. R., Cardoso, C. A. L., Cândido, L. S., Pereira, J. G., de Oliveira, K. M. P., & Grisolia, A. B. (2018). Tools for monitoring aquatic environments to identify anthropic effects. Environmental Monitoring and Assessment, 190(2). https://doi.org/10.1007/ s10661-017-6440-2

Demirbas, A. (2008). Heavy metal adsorption onto agro-based waste materials: A review. Journal of Hazardous Materials, 157(2–3), 220–229. https://doi.org/10.1016/j.jhazmat.2008.01.024

Fihri, A., Len, C., Varma, R. S., & Solhy, A. (2017). Hydroxyapatite: A review of syntheses, structure and applications in heterogeneous catalysis. Coordination Chemistry Reviews, 347, 48–76. https://doi.org/10.1016/j. ccr.2017.06.009

Galicia Ayala, J., Díaz, J. A., & Chávez-Sifontes, M. (2022). Propiedades físicas y químicas de materiales tipo hidroxiapatita sintetizados a partir de residuos de la industria alimentaria mediante el empleo de un método sol-gel modificado. Revista Minerva UES, 5(2), 1–18.

Guo, X., Yan, H., Zhao, S., Li, Z., Li, Y., & Liang, X. (2013). Effect of calcining temperature on particle size of hydroxyapatite synthesized by solid-state reaction at room temperature. Advanced Powder Technology, 24(6), 1034– 1038. https://doi.org/10.1016/j.apt.2013.03.002

Ivanets, A. I., Kitikova, N. V., Shashkova, I. L., Roshchina, M. Y., Srivastava, V., & Sillanpää, M. (2019). Adsorption performance of hydroxyapatite with different crystalline and porous structure towards metal ions in multicomponent solution. Journal of Water Process Engineering, 32(September), 100963. https://doi.org/10.1016/j.jwpe.2019.100963

Kubier, A., Wilkin, R. T., & Pichler, T. (2019). Cadmium in soils and groundwater: A review. Applied Geochemistry, 108(February). https://doi. org/10.1016/j.apgeochem.2019.104388

Kumar Nayak, A. (2010). Hydroxyapatite Synthesis Methodologies: An Overview. Proceedings - Design Automation Conference, 2, 903–907.

Nayak, A., & Bhushan, B. (2021). Hydroxyapatite as an advanced adsorbent for removal of heavy metal ions from water: Focus on its applications and limitations. Materials Today: Proceedings, 46(20), 11029–11034. https://doi. org/10.1016/j.matpr.2021.02.149

Scalera, F., Gervaso, F., Sanosh, K. P., Sannino, A., & Licciulli, A. (2013). Influence of the calcination temperature on morphological and mechanical properties of highly porous hydroxyapatite scaffolds. Ceramics International, 39(5), 4839–4846. https://doi. org/10.1016/j.ceramint.2012.11.076

Sharma, H., Rawal, N., & Mathew, B. B. (2015). The Characteristics, Toxicity and Effects of Cadmium. International Journal of Nanotechnology and Nanoscience, 3, 1–9.

Sparks, D. L. (2005). Toxic metals in the Environment: The Role of Surfaces. Elements, 1, 193–198.

Szcześ, A., Hołysz, L., & Chibowski, E. (2017). Synthesis of hydroxyapatite for biomedical applications. Advances in Colloid and Interface Science, 249(April), 321–330. https://doi.org/10.1016/j. cis.2017.04.007

Thi Thom, N., Thi Mai Thanh, D., Thi Nam, P., Thu Phuong, N., & Buess-Herman, C. (2018). Adsorption behavior of Cd2+ ions using hydroxyapatite (HAp) powder. Green Processing and Synthesis, 7(5), 409–416. https://doi.org/10.1515/gps-2018-0031

Toibah, A. R., Misran, F., Shaaban, A., & Mustafa, Z. (2019). Effect of pH condition during hydrothermal synthesis on the properties of hydroxyapatite from eggshell waste. Journal of Mechanical Engineering and Sciences, 13(2), 4958–4969. https://doi.org/10.15282/jmes.13.2.2019.14.0411

Wang, Z., & Hellweg, S. (2021). First Steps Toward Sustainable Circular Uses of Chemicals: Advancing the Assessment and Management Paradigm. ACS Sustainable Chemistry and Engineering, 9(20), 6939–6951. https://doi. org/10.1021/acssuschemeng.1c00243

Yuan, Z., Luo, T., Liu, X., Hua, H., Zhuang, Y., Zhang, X., Zhang, L., Zhang, Y., Xu, W., & Ren, J. (2019). Tracing anthropogenic cadmium emissions: From sources to pollution. Science of the Total Environment, 676, 87–96. https://doi. org/10.1016/j.scitotenv.2019.04.250

Published

2025-01-16

Issue

Section

Artículos Científicos

How to Cite

Influence of the ratio “porosity-generating agent versus sol” on the adsorption capacity of hydroxyapatite-based materials (HAp) to remove Cd2+ dissolved in water. (2025). Revista Minerva, 7(3), 5-14. https://revistas.ues.edu.sv/index.php/minerva/article/view/3303