Microestructural and ferroelectric analyses of Pb₁₋₃ₓ/₂Laₓ(Zr₀.₅₄Ti₀.₄₆)₁₋₅ᵧ/₄NbᵧO₃ soft ceramics.

Authors

  • M.D. Durruthy-Rodríguez Universidad Nacional Evangelica
  • M. Hernández-García Centro de Investigación y de Estudios Avanzados
  • J.M. Yañez-Limón Centro de Investigación y de Estudios Avanzados
  • F. J. Espinoza Beltrán Centro de Investigación y de Estudios Avanzados
  • D. Rivero Ramírez Instituto Superior de Tecnologías y Ciencias Aplicadas

Keywords:

Ferroelectric materials, Microstructure, Hysteresis, Polarization, PZT ceramics

Abstract

Microstructural and ferroelectric analyses were carried out on Pb₁₋₃ₓ/₂Laₓ(Zr₀.₅₄Ti₀.₄₆)₁₋₅ᵧ/₄NbᵧO₃ ceramics, x = y = 0.004, 0.006, 0.008 and 0.01 mol%. Using Piezoresponse Force Microscopy (PFM) and piezoelectric Hysteresis Loop (HL), ferroelectric behavior, and ferroelectric domain sizes were determined. Grain size (as determinate by SEM) and ferroelectric domain area decrease with the increase of dopant concentration from 3 μm to 1 μm and from 0.56 μm² to 0.32 μm², respectively. The maximum remnant polarization was obtained for Pb₀.₉₈₅La₀.₀₁Zr₀.₅₄Ti₀.₄₆)₀.₉₈₇₅Nb₀.₀₁O₃, showing that samples polarize easier with higher La³⁺ and Nb⁵⁺ dopant concentration. The coercive field does not show significant differences as the La and Nb content is varied. Grains tend to be single crystals as the La³⁺ and Nb⁵⁺ dopant concentration is increased.

Downloads

Download data is not yet available.

Author Biographies

M. Hernández-García, Centro de Investigación y de Estudios Avanzados

CINVESTAV

J.M. Yañez-Limón, Centro de Investigación y de Estudios Avanzados

CINVESTAV

F. J. Espinoza Beltrán, Centro de Investigación y de Estudios Avanzados

CINVESTAV

D. Rivero Ramírez, Instituto Superior de Tecnologías y Ciencias Aplicadas

Facultad de Ciencias y Tecnologías Nucleares

References

Alexe M., Gruverman A. 2004. Nanoscale Characterization of Ferroelectric Materials. Berlin. Springer. 279 p.

Cullity B.D., Stock S.R. 2001. Elements of X-Ray Diffraction. Third ed. New Jersey-Uppper Saddle River. Prentice Hall. 664 p.

Dabbs D.M., Aksay I.A. 2000. Selfassembled ceramics produced by complexfluid templation. Annu. Rev. Phys. Chem. 51, 601-22.

Durruthy-Rodríguez M. D., Costa-Marrero J., Hernández-García M., Calderón-Piñar F., Yañez-Limón J. M. 2010. Photoluminescence in ¨hard¨ and ¨soft¨ ferroelectric ceramics. Applied Physics A: Materials Science & Processing 98, 543-550.

Durruthy-Rodríguez M. D., Costa-Marrero J., Hernández-García M., Calderón-Piñar F., Malfatti C., Yáñez-Limón J. M. 2011. Optical characterization in Pb(Zr1-xTix)1-y NbyO3 ferroelectric ceramic system. Applied Physics A: Materials Science & Processing 103, 467-476.

Enriquez-Flores C.I., Gervacio-Arciniega J.J., Cruz-Valeriano E.; de Urquijo-Ventura P., Gutierrez-Salazar B.J., Espinoza-Beltran F.J. 2012. Fast frequency sweeping in resonance-tracking SPM for high-resolution AFAM and PFM imaging. Nanotechnology 23, 495705.

Halperin C., Mutchnik S., Agronin A., Molotskii M., Urenski P., Salai M., Rosenman G. 2004. Piezoelectric effect in human bones studied in nanometer scale. Nano Lett. 4, 1253-1256.

Hench L.L., West J.K. 1990. Principles of Electronic Ceramics. New York. Wiley. 576 p.

Hong S. 2004. Nanoscale Phenomena in Ferroelectric Thin Films. Dordrecht. Kluwer. 277 p.

Jaffe B., Cook W.R., Jaffe H. 1971. Piezoelectric Ceramics. London-New York. Academic Press. 328 p.

Jesse S., Baddorf A.P., Kalinin S.V. 2006. Dynamic behaviour in piezoresponse force microscopy. Nanotechnology 17, 1615-1628.

Kalinin S.V., Bonnell D.A., Alvarez T., Lei X., Hu Z., Shao R., Ferris J.H. 2004. Ferroelectric Lithography of Multicomponent Nanostructure. Adv. Mat. 16, 795-99.

Kalinin S.V., Rodriguez B.J., Jesse S., Shin J., Baddorf A.P., Gupta P., Jain H., Williams D.B., Gruverman A. 2006 a). Vector piezoresponse force microscopy. Microsc. Microanal. 12, 206-20.

Kalinin S.V., Rodriguez B.J., Jesse S., Thundat T., Grichko V., Baddorf A.P., Gruverman A. 2006b). Bioelectromechanical imaging by scanning probe microscopy: Galvani’s experiment at the nanoscale. Ultramicroscopy 106, 334-40.

Kalinin S.V., Rodriguez B.J., Jesse S., Thundat T., Gruverman A. 2005. Electromechanical imaging of biological systems with sub-10 nm resolution. Appl. Phys. Lett. 87, 053901-11.

Lines M.E., Glass A.M. 1977. Principles and Applications of Ferroelectric and Related Materials. Oxford. Clarendon Press; 680 p.

Noheda B., Cox D.E., Shirane G., Guo R., Jones B., Cross L.E. 2001. Stability of the monoclinic phase in the ferroelectric perovskite PbZr1-xTixO3. Phys. Rev. B 63, 14103.

Nye J.F. 2001. Physical Properties of Crystal. Oxford. Clarendon Press. 324 p.

Palkar V.R., Purandare S.C., Pinto R. 1999. Ferroelectric thin films of PbTiO3 on silicon. J. Phys. D 32, R1-R18.

Polla D.L., Francis L.F. 1998. Processing and Characterization of piezoelectric materials and integration into microelectromechanical systems. Annu. Rev. Mater. Sci. 28, 563-97.

Rivero D., Portelles J., Benavides J.I., Hernández M., Quiles F.J., Díaz M. 2008. Semiautomatic installation to measure the hysteresis knot in ferroelectric materials. Revista Cubana de Física 25B, 133-35.

Rodriguez B.J., Gruverman A., Kingon A.I., Nemanich R.J., Ambacher O. 2002. Piezoresponse force microscopy for polarity imaging of GaN. Appl. Phys. Lett. 80, 4166-68.

Rodriguez B.J., Gruverman A., Kingon A.I., Nemanich R.J., Cross J.S. 2004. Threedimensional high-resolution reconstruction of polarization in ferroelectric capacitors by piezoresponse force microscopy. J. Appl. Phys. 95, 1958-1962.

Roelofs A., Boettger U., Waser R., Schlaphof F., Trogisch S., Eng L.M. 2000. Differentiating 180o and 90o switching of ferroelectric domains with three-dimensional piezoresponse force microscopy. Appl. Phys. Lett. 77, 3444-3446.

Schonholzer U.P., Gauckler L.J. 1999. Ceramic Parts Patterned in the Micrometer Range. Adv. Mat. 11, 630-632.

Scott J. 2000. Ferroelectric Memories, Berlin: Springer Verlag. 120 p.

Setter N., Colla E.L. 1993. Ferroelectric Ceramics. Basel. Birkhauser Verlag. 161 p.

Soergel E. 2011. Piezoresponse force microscopy (PFM). J. Phys. D: Appl. Phys. 44, 464003-20.

Suárez-Gómez A., Durruthy M.D., Costa-Marrero J., Peláiz-Barranco A., Calderón-Piñar F., Saniger-Blesa J.M., de Frutos J. 2009. Properties of the PLZTN x/54/46 (0.4 ≤ x ≤ 1.4) ceramic system. Materials Research Bulletin 44, 1116–1121.

Suzuki M. 1995. Review on future ferroelectric nonvolatile memory: FeRAM. J. Ceram. Soc. Jpn. 103, 1099-1111.

Terabe K., Nakamura M., Takekawa S., Kitamura K., Higuchi S., Gotoh Y., Cho Y. 2003. Microscale to nanoscale ferroelectric domain and surface engineering of a nearstoichiometric LiNbO3 crystal. Appl. Phys. Lett. 82, 433-35.

Tybell T., Paruch P., Giamarchi T., Triscone J.M. 2002. Domain Wall Creep in Epitaxial Ferroelectric Pb(Zr0.2Ti0.8)O3 Thin Films. Phys. Rev. Lett. 89, 097601-1-4.

Zhu W., Fujii I., Ren W., Trolier-McKinstry S. 2012. Domain Wall Motion in A and B Site Donor-Doped Pb(Zr0.52Ti0.48)O3 Films. J. Am. Ceram. Soc. 95, 2906-2913.

Published

2022-04-05

How to Cite

Durruthy-Rodríguez, M., Hernández-García, M., Yañez-Limón, J., Espinoza Beltrán, F. J., & Rivero Ramírez, D. (2022). Microestructural and ferroelectric analyses of Pb₁₋₃ₓ/₂Laₓ(Zr₀.₅₄Ti₀.₄₆)₁₋₅ᵧ/₄NbᵧO₃ soft ceramics. Revista Comunicaciones Científicas Y Técnológicas, 6(1), 36. Retrieved from https://revistas.ues.edu.sv/index.php/comunicaciones/article/view/2135

Issue

Section

Artículo científico