Estrategia Didáctica para Desarrollar un Esquema Gráfico y Algebraico del Concepto de Solución de Una Ecuación Diferencial Ordinaria

Un Estudio de Casos

Authors

Keywords:

schemas, ordinary differential equations, algebraic route, graphic route, graphical-algebraic approach

Abstract

In this work, a didactic strategy is presented to develop a graphic-algebraic schema of the concept of solution of a first-order ordinary differential equation, as well as a characterization of a student's schema after concluding a learning sequence under said strategy mediated with GeoGebra. The research methodology is qualitative in nature and is based on a case study with a fifth semester student of the Bachelor's Degree in Mathematics. The data were obtained from a questionnaire and a semi-structured interview. The student's productions show that their actions and processes are strongly linked to the algebraic and algorithmic mode of thinking, with weak cognitive connections between the algebraic and graphic routes. Therefore, it can be concluded that the student has developed a weak graphic-algebraic schema of the concept of solution of a first-order ordinary differential equation, which has not been consolidated as an object.

Downloads

Download data is not yet available.

References

Arnon, I., Cottrill, J., Dubinsky, E., Oktac, A., Roa Fuentes, S., Trigueros, M., & Weller, K. (2014). APOS Theory. A Framework for Research and Curriculum Development in Mathematics Education. Springer. https:// doi.org/10.1007/978-1-4614-7966-6

Arslan, S. (2010a). Do students really understand what an ordinary differential equation is? International Journal of Mathematical Education in Science and Technology, 41(7), 873-888. https://doi.org/ 10.1080/0020739X.2010.486448

Arslan, S. (2010b). Traditional instruction of differential equations and conceptual learning. Teaching Mathematics and its Applications: An International Journal of the IMA, 20(2), 94-107. https://doi.org/10.1093/ teamat/hrq001

Buendía, G., & Cordero, F. (2013). The use of graphs in specific situations of the initial conditions of linear differential equations. International Journal of Mathematical Education in Science and Technology, 44(6), 927-937. https://doi.org/10.1080/0020739X.2013.790501

Camacho, M.; Perdomo, J. y Santos-Trigo, M. (2012a). An exploration of students’ conceptual knowledge built in a first ordinary differential equations course (Part I). The Teaching of Mathematics, XV(1), 1–20.

Camacho, M.; Perdomo, J. y Santos-Trigo, M. (2012b). An exploration of students’ conceptual knowledge built in a first ordinary differential equations course (Part II). The Teaching of Mathematics, XV(2), 63–84.

Camacho-Machín, M. y Guerrero-Ortiz, C. (2015). Identifying and exploring relationships between contextual situations and ordinary differential equations. International Journal of Mathematical Education in Science and Technology, 46(8), 1077-1095. https://doi.org/10.1080/0020739X.2015.1025877

Clark, J., Cordero, F., Cottrill, J., Czarnocha, B., DeVries, D., John, D., Tolias, G. y Vidakovic (1997). Constructing a schema: the case of the chain rule. Journal of Mathematical Behavior, 16(4), 345-364.

Coll, C. (2012). Grandes de la educación: Jean Piaget. Padres y Maestros / Journal of Parents and Teachers, (344). https://revistas.comillas.edu/index.php/padresymaestros/article/view/532

Diarmaid Hyland, D., Kampen, P. y Nolan, B. (2019). Introducing direction fields to students learning ordinary differential equations (ODEs) through guided inquiry. International Journal of Mathematical Education in Science and Technology. https://doi.org/10.1080/0020739X.2019.1670367

Dreyfus, T. (2002). Advanced mathematical thinking processes. En D. Tall (Ed), Advanced mathematical Thinking (págs. 25–41). Kluwer Academic Press.

Dubinsky, E. (1996). Aplicación de la perspectiva piagetiana a la educación matemática universitaria. Educación Matemática, 8(3), 24–41.

Dubinsky, E. (2002). Reflective Abstraction in Advanced Mathematical Thinking. En D. Tall (Ed.), Advanced Mathematical Thinking (págs. 95–126). Kluwer Academic Press.

Diković , L. (2009a). Implementing Dynamic Mathematics Resources with GeoGebra at the College Level. International Journal of Emerging Technologies in Learning (iJET), 4(3), 51-54. https://www.learntechlib.org/p/ 45282/

Diković , L. (2009b). Applications GeoGebra into teaching some topics of mathematics at the college level. Computer Science and Information Systems, 6(2), 191-203. https://doi.org/10.2298/CSIS0902191D

Fuentealba, C., Trigueros M., Sánchez-Matamoros G. y Badillo E. (2022). Los mecanismos de asimilación y acomodación en la tematización de un Esquema de derivada. AIEM-Avances de investigación en educación matemática, 21, 23-44. https://doi.org/10.35763/aiem21.4241

Guerra Cáceres, M.E. (2022). Conocimientos previos y GeoGebra en la enseñanza y aprendizaje de las ecuaciones diferenciales ordinarias. REDISED Revista Diálogo Interdisciplinario sobre Educación, 4(2), 121-134. https://revistas.ues.edu.sv/index.php/redised/article/view/2783/2768

Habre, S. (2000). Exploring students’ strategies to solve ordinary differential equations in a reformed setting. The Journal of Mathematical Behavior, 18(4), 455–472. https://doi.org/10.1016/S0732-3123(00)00024-9

Habre, S. (2003). Investigating students’ approval of a geometrical approach to differential equations and their solutions. International Journal of Mathematical Education in Science and Technology, 34(5), 651–662. https:// doi.org/10.1080/0020739031000148912

Hyland, D., van Kampen, P., & Nolan, B. (2021). Introducing direction fields to students learning ordinary differential equations (ODEs) through guided inquiry. International Journal of Mathematical Education in Science and Technology, 52(3), 331-348. https://doi.org/10.1080/0020739X.2019.1670367

Kouki, R., & Griffiths, B. (2021). Semiotic Aspects of Differential Equations: Analytical and Graphical Competency in the USA and Tunisia. African Journal of Research in Mathematics, Science and Technology Education, 25(2), 174-184. https://doi.org/10.1080/18117295.2021.2003135

Martínez-Planell, R., y Trigueros, M. (2019). Using cycles of research in APOS: The case of functions of two variables. Journal of Mathematical Behavior, 55, 663–672. https://doi.org/10.1016/j.jmathb.2019.01.003.

Montenegro, F. y Podevills, L. (2021). Propuesta de enseñanza mediada por TIC en la asignatura Álgebra Lineal desde APOE: Tesis de Maestría en carreras de Ingeniería en Informática. UNION – Revista Iberoamericana de Educación Matemática, 62, 1-17.

Oktaç, Asuman (2022). What’s new with APOS theory? A look into levels and Totality. AIEM-Avances de investigación en educación matemática, 21, 9-21. https://doi.org/10.35763/aiem21.4245

Orts, A., Boigues Planes, F., & Llinares Ciscar, S. (2018). Génesis Instrumental del Concepto de Recta Tangente. 20(2), pp. 72-83. https://doi.org/10.17648/acta.scientiae.v20iss2id3833

Piaget, J. (1978). Introducción a la epistemología genética 1. El pensamiento matemático. Editorial Paidós.

Piaget, J. (1979). Investigaciones sobre la abstracción reflexionante. Editorial Huemul S.A.

Piaget, J. y García, R. (2004). Psicogénesis e historia de la ciencia. Editorial Siglo XXI.

Raychaudhuri, D. (2013). A framework to categorize students as learners based on their cognitive practices while learning differential equations and related concepts. International Journal of Mathematical Education in Science and Technology, 44(8), 1239-1256. https://doi.org/10.1080/0020739X.2013.770093

Raychaudhuri, D. (2014). Adaptation and extension of the framework of reducing abstraction in the case of differential equations. International Journal of Mathematical Education in Science and Technology, 45(1), 35-57. https://doi.org/10.1080/0020739X.2013.790503

Tall, D. (2002). The Psychology of Advanced Mathematical Thinking. En D. Tall (Ed.), Advanced Mathematical Thinking (págs. 3-21). Kluwer Academic Press.

Tall, D. (14 de mayo de 2005). Advanced Mathematical Thinking. http://homepages.warwick.ac.uk/staff/ David.Tall/themes/amt.html

Trigueros, M. (2005). La noción de esquema en la investigación en matemática educativa a nivel superior. Educación Matemática, 17(1), 5–31.

Trouche, L., Gueudet, G., & Pepin, B. (2018). Documentational Approach to Didactics. In S. Lerman (Ed.), E n c y c l o p e d i a o f M a t h e m a t i c s E d u c a t i o n ( p p . 1 - 1 1 ) . S p r i n g e r . https://doi.org/ 10.1007/978-3-319-77487-9_100011-1

West, B. H. (2016). Teaching Differential Equations without Computer Graphics Solutions is a Crime. CODEE Journal, 11. https://scholarship.claremont.edu/codee/vol11/iss1/2

Published

2024-06-26