Efecto de dosis crecientes de compost sobre el contenido de clorofila y crecimiento de ramas en Myrteola nummularia (Poir.)
Palabras clave:
Nativa, compost, fisiologia, antocianinaResumen
Myrteola nummularia (Poir.), conocida tradicionalmente como Myrteola, es una especie nativa de Chile reconocida por sus bayas con un alto contenido de polifenoles y propiedades antioxidantes. La fertilización orgánica en especies nativas cultivadas promueve el crecimiento y desarrollo fisiológico de la planta. Sin embargo, hay escaso conocimiento sobre el efecto de la fertilización orgánica en el desarrollo fisiológico y crecimiento de M. nummularia. El objetivo de este estudio fue evaluar el efecto de cuatro dosis de compost (0, 5, 10 y 15 t ha-1) en parámetros f isiológicos, crecimiento y pigmentos de plantas jóvenes de Myrteola. Para ello, se estableció un huerto de Myrteola en 2022 en la Región de Ñuble, zona centro-sur de Chile. Se midieron parámetros fisiológicos, tales como: el máximo rendimiento cuántico del fotosistema II y conductancia estomática, parámetros de crecimiento como: la altura de la planta y de las ramas, e índices foliares como el contenido de clorofila, antocianinas y flavonoides. Los resultados indicaron que las plantas respondieron a la fertilización orgánica mejorando los parámetros fisiológicos, de crecimiento e índices foliares. La dosis más alta de compost (15 t ha-1), mejoró significativamente el contenido de clorofila (66%) y el largo de las ramas (32%) en comparación con el control, probablemente debido a un aumento en la disponibilidad de N y a un pH más ácido. Por lo tanto, la fertilización orgánica con dosis altas de compost (15 t ha-1) mejoró el crecimiento de Myrteola, favoreciendo un mayor verdor y largo de ramas. Esto podría potenciar la producción futura de frutos, convirtiéndose en una alternativa productiva viable.
Referencias
Agrometeorología. (2023). Red agrometeorológica INIA. Instituto de Investigaciones Agropecuarias. https://agrometeorologia.cl
Albaladejo-Marico, L., Yepes-Molina, L., & Carvajal, M. (2024). Alteration of nutrient uptake and secondary metabolism connection by foliar application of citrus flavonoids to broccoli plants. Plant Growth Regulation, 104, 855–867. https://doi.org/10.1007/s10725-024-01204-3
Aly, M. A., Harhash, M. M., Awad, R. M., & El-Kelawy, H. R. (2015). Effect of foliar application with calcium, potassium and zinc treatments on yield and fruit quality of Washington navel orange trees. Middle East Journal of Agricultural Research, 4(3), 564–568.
Amuti, K. (1983). Effect of removal of flower buds, open flowers, young pods and shoot apex on growth and pod set in soybean. Journal of Experimental Botany, 34(6), 719–725. https://doi.org/10.1093/jxb/34.6.719
Aydi, S., Sassi Aydi, S., Marsit, A., El Abed, N., Rahmani, R., Bouajila, J., Merah, O., & Abdelly, C. (2023). Optimizing alternative substrate for tomato production in arid zone: Lesson from growth, water relations, chlorophyll fluorescence, and photosynthesis. Plants, 12(7), 1457. https://doi.org/10.3390/plants12071457
Bashir, O., Ali, T., Baba, Z. A., Rather, G. H., Bangroo, S. A., Mukhtar, S. D., Naik, N., Mohiuddin, R., Bharati, V., & Bhat, R. A. (2021). Soil organic matter and its impact on soil properties and nutrient status. En Microbiota and Biofertilizers (pp. 129–159). Springer. http://dx.doi.org/10.1007/978-3-030-61010-4_7
Betancur, M., Retamal-Salgado, J., López, M. D., Vergara-Retamales, R., & Schoebitz, M. (2023). Novel approach to organic mulching from natural-based solutions to enhance soil health and functional value of calafate fruit. Horticulturae, 9(11), 1202. https://doi.org/10.3390/horticulturae9111202
Betancur, M., Retamal-Salgado, J., López, M. D., Vergara-Retamales, R., & Schoebitz, M. (2024). Enhancing soil health and fruit quality in calafate orchards through sustainable amendments. Journal of Soil Science and Plant Nutrition, 24(1), 1235–1249. https://doi.org/10.1007/s42729-024-01625-z
Bolan, N., Kunhikrishnan, A., Choppala, G. K., Thangarajan, R., & Chung, J. W. (2012). Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility. Science of The Total Environment, 424, 264–270. https://doi.org/10.1016/j.scitotenv.2012.02.061
Chapin, F. S., Bloom, A. J., Field, C. B., & Waring, R. H. (1987). Plant responses to multiple environmental factors: Physiological ecology provides tools for studying how interacting environmental resources control plant growth. BioScience, 37(1), 49–57. https://doi.org/10.2307/1310177
Chaudhary, N., Singh, C., Pathak, P., & Vyas, D. (2022). Effects of different compost on vegetative and yield performance of pea. Communications in Soil Science and Plant Analysis, 53(17), 2308–2321. https://doi.org/10.1080/00103624.2022.2071440
Cordero, S., Abello, L., & Gálvez, F. (2017). Plantas silvestres comestibles y medicinales de Chile y otras partes del mundo. Corma. https://www.curriculumnacional.cl/614/articles-89567_recurso_pdf.pdf
Cordon, G., Lagorio, M. G., & Paruelo, J. M. (2016). Chlorophyll fluorescence, photochemical reflective index and normalized difference vegetative index during plant senescence. Journal of Plant Physiology, 199, 100–110. https://doi.org/10.1016/j.jplph.2016.05.010
Domínguez, D. (2012). Flora nativa Torres del Paine [en línea]. Ocho Libros. https://hdl.handle.net/20.500.14001/40618
Farzadfar, S., Knight, J. D., & Congreves, K. A. (2021). Soil organic nitrogen: An overlooked but potentially significant contribution to crop nutrition. Plant and Soil, 462, 7–23. https://doi.org/10.1007/s11104-021-04860-w
Flis, S., Jastrzebski, Z., Namiesnik, J., Arancibia-Avila, P., Toledo, F., Leontowicz, H., Leontowicz, M., Suhaj, M., Trakhtenberg, S., & Gorinstein, S. (2012). Evaluation of inhibition of cancer cell proliferation in vitro with different berries and correlation with their antioxidant levels by advanced analytical methods. Journal of Pharmaceutical and Biomedical Analysis, 62, 68–78. https://doi.org/10.1016/j.jpba.2012.01.005
Hernández Valencia, R. D., Juárez Maldonado, A., Pérez Hernández, A., Lozano Cavazos, C. J., Zermeño González, A., & González Fuentes, J. A. (2022). Influencia de fertilizantes orgánicos y del silicio sobre la fisiología, el rendimiento y la calidad nutracéutica del cultivo de fresa. Nova scientia, 14(28). https://doi.org/10.21640/ns.v14i28.3032
Hirzel, J. (2014). Diagnóstico nutricional y principios de fertilización en frutales y vides (2ª ed. aum. y corr.). INIA. https://hdl.handle.net/20.500.14001/357
Işık, M., Aldoğan, S., Sönmez, M., İlhan, S., & Ortaş, I. (2023). Effect of increasing phosphorus doses application on some physical, chemical and biological properties of soil, under long-term experiment conditions. International Journal of Agricultural and Applied Sciences, 4(1), 143–149. https://doi.org/10.52804/ijaas2023.4124
Kahle, D., & Wickham, H. (2013). Ggmap: Spatial visualization with ggplot2. The R Journal, 5(1), 144–161. https://journal.r-project.org/archive/2013-1/kahle-wickham.pdf
Kovalchuk, I. Y., Mukhitdinova, Z., Turdiyev, T., Madiyeva, G., Akin, M., Eyduran, E., & Reed, B. M. (2018). Nitrogen ions and nitrogen ion proportions impact the growth of apricot (Prunus armeniaca) shoot cultures. Plant Cell, Tissue and Organ Culture (PCTOC), 133, 263–273.
Kooten, O., & Jan, S. (1990). The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research, 25(3), 147–150. https://doi.org/10.1007/BF00033156
Kumar, K. V., Raj, B. A., Sriraghul, A., Sadanish, K., Raj, N. R., Prajith, K. S., & Tamilselvan, M. (2023). Comparing the effect of organic and inorganic amendments on soil health. Bhartiya Krishi Anusandhan Patrika, 38(1), 80–83. https://doi.org/10.18805/BKAP599
Landrum, L. R. (1988). Systematics of Myrteola (Myrtaceae). Systematic Botany, 13(1), 120–132. https://doi.org/10.2307/2419248
Liu, Y., Lan, X., Hou, H., Ji, J., Liu, X., & Lv, Z. (2024). Multifaceted ability of organic fertilizers to improve crop productivity and abiotic stress tolerance: Review and perspectives. Agronomy, 14(6), 1141. https://doi.org/10.3390/agronomy14061141
Lopez, A. (2003). Phytochemistry and biological activities of selected Colombian medicinal plants (Tesis doctoral en Botánica). University of British Columbia Library, Vancouver, Canadá. https://open.library.ubc.ca/soa/cIRcle/collections/ubctheses/831/items/1.0091221
Matiz-Villamil, A., Méndez-Carranza, K. J., Pascagaza-Pulido, A. F., Rendón-Rendón, T., Noriega-Noriega, J., & Pulido-Villamarín, A. (2023). Trends in the management of organic swine farm waste by composting: A systematic review. Heliyon, 9(8), e18208. https://doi.org/10.1016/j.heliyon.2023.e18208
Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence—A practical guide. Journal of Experimental Botany, 51, 659–668. https://doi.org/10.1093/jxb/51.345.659
Mehdaoui, I., Mahmoud, R., Majbar, Z., Berrada, S., Abbou, M. B., Elshikh, M. S., & Rais, Z. (2024). Comparing how compost and manure affect soil organic matter using a complete factorial design. Journal of King Saud University–Science, 36(10), 103471. https://doi.org/10.1016/j.jksus.2024.103471
Miao, L., Wang, X., Yu, C., Ye, C., Yan, Y., & Wang, H. (2024). What factors control plant height? Journal of Integrative Agriculture. https://doi.org/10.1016/j.jia.2024.03.058
Oviedo, E. (2017). Avances en investigación sobre el compostaje de biorresiduos en municipios menores de países en desarrollo. Ingeniería Investigación y Tecnología, 18(1), 31–42. https://www.scielo.org.mx/pdf/iit/v18n1/1405-7743-iit-18-01-00031.pdf
Pande, K. K., & Dimri, D. C. (2020). Response of nitrogen application in fruit trees: A review. International Journal of Current Microbiology and Applied Sciences, 9(5), 545–559.
Pinto-Morales, F., Retamal-Salgado, J., López, J., Zapata, M. D., Vergara-Retamales, R., & Pinto-Poblete, A. (2022). The use of compost increases bioactive compounds and fruit yield in calafate grown in the central south of Chile. Agriculture, 12(1), 98. https://doi.org/10.3390/agriculture12010098
Pinto-Poblete, A., Retamal-Salgado, J., López, M., Zapata, D., Sierra-Almeida, N., & Schoebitz, M. (2022). Combined effect of microplastics and Cd alters the enzymatic activity of soil and the productivity of strawberry plants. Plants, 11(4), 536. https://doi.org/10.3390/plants11040536
Poblete-Grant, P., & Reyes-Díaz, M. (2011). Efecto de diferentes dosis de sulfato de calcio sobre la eficiencia fotoquímica y sistema antioxidante de tres cultivares de arándano alto (Vaccinium corymbosum L.) sometidos a estrés por toxicidad de aluminio en un andisol (Tesis de grado). Universidad de La Frontera, Temuco, Chile. https://bibliotecadigital.ufro.cl/?a=view&item=1102
Purnawanto, A. M., & Ahadiyat, Y. R. (2022). Maize growth and yield characteristics with application of mushroom waste substrate vermicompost in Ultisol. Agronomy Research, 20(S1), 1090–1103. https://doi.org/10.15159/AR.22.071
Raksun, A., Merta, I. W., & Mertha, I. G. (2021). Vegetative growth response of tomato (Solanum lycopersicum L.) due to different doses of horse manure bokashi. Jurnal Biologi Tropis, 21(2), 434–440.
Rathje, H. (1959). Soil chemical analysis. Prentice Hall, Englewood Cliffs, NJ.
Retamal-Salgado, J., Vásquez, R., Fischer, S., Hirzel, J., & Zapata, N. (2017). Decrease in artificial radiation with netting reduces stress and improves rabbit-eye blueberry (Vaccinium virgatum Aiton) ‘Ochlockonee’ productivity. Chilean Journal of Agricultural Research, 77(3), 226–233. http://dx.doi.org/10.4067/S0718-58392017000300226
Rodríguez, T. E. (1972). Clasificación climática de Wilhelm Köppen (Introducción) (3ª ed.). Universidad de Chile, Facultad de Agronomía.
Rodríguez, R., Marticorena, C., Alarcón, D., Baeza, C., Cavieres, L., Finot, V. L., Fuentes, N., Kiessling, A., Mihoc, M., Pauchard, A., Ruiz, E., Sánchez, P., & Marticorena, A. (2018). Catálogo de las plantas vasculares de Chile. Gayana. Botánica, 75(1), 1–430.
Romero-Román, M. E., Schoebitz, M., Bastías, R. M., Fernández, P. S., García-Viguera, C., & López-Belchi, M. D. (2021). Native species facing climate changes: Response of calafate berries to low temperature and UV radiation. Foods, 10(1), 196. https://doi.org/10.3390/foods10010196
Romero, P., Fernández-Fernández, J. I., & Martínez-Cutillas, A. (2010). Physiological thresholds for efficient regulated deficit-irrigation management in winegrapes grown under semiarid conditions. American Journal of Enology and Viticulture, 13, 300–312.
Sahu, H., Kumar, U., Mariappan, S., Mishra, A. P., & Kumar, S. (2024). Impact of organic and inorganic farming on soil quality and crop productivity for agricultural fields: A comparative assessment. Environmental Challenges, 15, 100903. https://doi.org/10.1016/j.envc.2024.100903
Salisbury, F. B., & Ross, C. W. (2000). Fisiología de las plantas. Paraninfo Thomson Learning.
Sayara, T., Basheer-Salimia, R., Hawamde, F., & Sánchez, A. (2020). Recycling of organic wastes through composting: Process performance and compost application in agriculture. Agronomy, 10(11), 1838. https://doi.org/10.3390/agronomy10111838
Schmidt, W. (2014). Root systems biology. Frontiers in Plant Science, 5, 215. https://doi.org/10.3389/fpls.2014.00215
Schreckinger, M. E., J. Lotton, M.A.Lila and E.G.D. Mejia. 2010. Berries from South America: A comprehensive review on chemistry, health potential, and commercialization. Journal of Medicinal Food, 13(2): 233-246.
Shah, Z. A., Dar, M. A., Dar, E. A., Obianefo, C. A., Bhat, A. H., Ali, M. T., El-Sharnouby, M., Shukry, M., Kesba, H., & Sayed, S. (2022). Sustainable fruit growing: An analysis of differences in apple productivity in the Indian state of Jammu and Kashmir. Sustainability, 14(21), 14544. https://doi.org/10.3390/su142114544
Silva, É., Tavares, M. H. F., Secco, D., Barbosa, G. M., Costa, M. S. S., & Basegio, D. (2024). Impacts on soil quality with the use of organic fertilizers. Observatorio de La Economía Latinoamericana, 22(11), e7983. https://doi.org/10.55905/oelv22n11-240
Six, J., Paustian, K., Elliott, E. T., & Combrink, C. (2000). Soil structure and soil organic matter: I. Distribution of aggregate size classes and aggregate-associated carbon. Soil Science Society of America Journal, 64(2), 681–689. https://doi.org/10.2136/sssaj2000.642681x
Stolpe, N. B. (2006). Descripción de los principales suelos de la VIII Región de Chile. Universidad de Concepción, Facultad de Agronomía.
Tarantino, A., Disciglio, G., Frabboni, L., & Lopriore, G. (2023). Organo mineral fertilizers increase vegetative growth and yield and quality parameters of pomegranate cv. Wonderful fruits. Horticulturae, 9(2), 164. https://doi.org/10.3390/horticulturae9020164
Vail, D. C., Hernández, D. L., Velis, E., & Wills, A. (2020). Compost tea production methods affect soil nitrogen and microbial activity in a northern highbush blueberry system. Agroecology and Sustainable Food Systems, 44(10), 1370–1383. https://doi.org/10.1080/21683565.2020.1724583
Valentine, A. J., Kleinert, A., Thuynsma, R., Chimphango, S., Dames, J., & Benedito, V. A. (2017). Physiology and spatio-temporal relations of nutrient acquisition by roots and root symbionts. In Progress in Botany (Vol. 78, pp. 167–233). Springer. https://doi.org/10.1007/124_2016_11
Vargas-Pineda, O. I., Trujillo-González, J. M., & Torres-Mora, M. A. (2019). El compostaje, una alternativa para el aprovechamiento de residuos orgánicos en las centrales de abastecimiento. Orinoquia, 23(2). https://doi.org/10.22579/20112629.575
Velásquez, G., Calabi-Floody, M., Poblete-Grant, P., Rumpel, C., Demanet, R., Condron, L., & Mora, M. (2016). Fertilizer effects on phosphorus fractions and organic matter in Andisols. Journal of Soil Science and Plant Nutrition, 16(2), 294–309. http://dx.doi.org/10.4067/S0718-95162016005000024
Vogel, H., González, B., Catenacci, G., & Doll, U. (2016). Domestication and sustainable production of wild crafted plants with special reference to the Chilean Maqui berry (Aristotelia chilensis). Julius-Kühn-Archiv, (453), 50. https://doi.org/10.5073/jka.2016.453.016
Walkley, A. J., & Black, I. A. (1934). Estimation of soil organic carbon by the chromic acid titration method. Soil Science, 37, 29–38.
Watanabe, F. S., & Olsen, S. R. (1965). Test of an ascorbic acid method for determining phosphorus in water and NaHCO₃ extracts from soil. Soil Science Society of America Journal, 29, 677–678.
Youssef, S. M., Shaaban, A., Abdelkhalik, A., Abd El Tawwab, A. R., Abd Al Halim, L. R., Rabee, L. A., Alwutayd, K. M., Ahmed, R. M. M., Alwutayd, R., & Hemida, K. A. (2023). Compost and phosphorus/potassium-solubilizing fungus effectively boosted quinoa’s physio-biochemical traits, nutrient acquisition, soil microbial community, and yield and quality in normal and calcareous soils. Plants, 12(17), 3071. https://doi.org/10.3390/plants12173071
Yue, H., Yue, W., Jiao, S., Kim, H., Lee, Y., Wei, G., Song, W., & Shu, D. (2023). Plant domestication shapes rhizosphere microbiome assembly and metabolic functions. Microbiome, 11(1), 70. https://doi.org/10.1186/s40168-023-01513-1
Zhu, Y., Wang, Y., & Zhang, Y. (2007). Effects of potassium nutrition on stomatal conductance and photosynthesis in rice. Plant and Soil, 294(1), 27–36.
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Andrés Pinto-Poblete, Gianfranco Schio, Matias Betancur, Sergio Moraga-Bustos, Fernando Pinto-Morales, Yessica Rivas, José Leyton

Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.

