Análisis de la mutación D614G en secuencia del genoma completo de SARS-CoV-2 en El Salvador

Autores/as

Palabras clave:

SARS-CoV-2, D614G, NGS, 2019-nCoV, COVID-19

Resumen

Introducción. El 18 de marzo se reporta el primer caso de infección por SARS- CoV-2 confirmado en El Salvador y durante el mes de octubre de 2020 se logra secuenciar el genoma de SARS-CoV-2 a partir de muestras obtenidas en el país. Objetivo. Analizar in silico las mutaciones detectadas en las secuencias aisladas en El Salvador. Metodología. Se utilizó la plataforma SOPHiA-DDM-V5.7.10., para la determinación de las variantes por mutaciones con sentido erróneo. Se utilizó la plataforma Nexclade beta v0.8.1.; se visualizó y comparó la proteína S silvestre (D614: PDB ID: 6VXX) y de la variante mutada (D614G: PDB ID: 6XS6). Para el modelamiento y generación de imágenes de los detalles moleculares de las proteínas se utilizó Pymol-v1.7.2.3. Resultados. Los cristales de la proteína S silvestre y mutada muestra diferencias a nivel molecular, incluyendo la pérdida de interacciones entre el residuo G614 del dominio S1 y la treonina 859 de dominio S2, favoreciendo de esta manera la conformación abierta de la proteína S, la cual es necesaria para la interacción de S con el receptor ACE2. Conclusión. Los hallazgos confirman el predominio de la variante D614G en este grupo de secuencias, lo cual probablemente favorece su transmisibilidad, que puede explicarse por la configuración de los sitios de unión con receptor ACE2. El predominio mundial de la D614G y las evidencias de laboratorio y bioinformáticas publicadas hasta la fecha, apuntan hacia una posible mayor infectividad y transmisibilidad.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Carlos Alexander Ortega Pérez, Universidad de El Salvador

Facultad de Medicina

Noé Rigoberto Rivera, Universidad de El Salvador

Facultad de Medicina

Carlos Enrique Hernández Ávila, Instituto Nacional de Salud

Departamento de Gobernanza y gestión del conocimiento

Citas

Harcourt J, Tamin A, Lu X, Kamili S, Sakthivel SK, Murray J et al. Severe acute respiratory syndrome coronavirus 2 from patient with coronavirus disease, United States. Emerging Infectious Diseases. 2020;26(6):1266-1273. DOI:10.3201/EID2606.200516

Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al. First Case of 2019 Novel Coronavirus in the United States. N. Engl. J. Med. 2020;382(10):929–936. doi:10.1056/nejmoa2001191

Gobierno de El Salvador. COVID-19 Reporte Diario. Gobierno de la Republica de El Salvador. 2021. Fecha de consulta: 21 de enero de 2021. Disponible en: https:// covid19.gob.sv/diarios/

Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–269. doi:10.1038/ s41586-020- 2008-3

Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, et al. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends Microbiol. 2016;24(6):490–502. doi:10.1016/j. tim.2016.03.003

Woo PCY, Lau SKP, Lam CSF, Lau CCY, Tsang AKL, Lau JHN, et al. Discovery of Seven Novel Mammalian and Avian Coronaviruses in the Genus Deltacoronavirus Supports Bat Coronaviruses as the Gene Source of Alphacoronavirus and Betacoronavirus and Avian Coronaviruses as the Gene Source of Gammacoronavirus and Deltacoronavi. J. Virol. 2012;86(7):3995–4008. doi:10.1128/ jvi.06540-11

Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol. 2020;92(4):418–423. doi:10.1002/jmv.25681

Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019;17(3):181–192. doi:10.1038/ s41579-018-0118-9

Fung SY, Yuen KS, Ye ZW, Chan CP, Jin DY. A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defence: lessons from other pathogenic viruses. Emerg. Microbes Infect. 2020;9(1):558–570. doi:10.1080/2222 1751.2020.1736644

Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, O´- Meara MJ, et al. A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug- Repurposing. BioRxiv Prepr. Serv. Biol. 2020;(2020.03.22.002386.). doi:https://doi. org/10.1101/2020.03.22.002386

Kim D, Lee JY, Yang JS, Kim JW, Kim VN, Chang H. The Architecture of SARS-CoV-2 Transcriptome. Cell. 2020;181(4):914- 921. e10. doi:10.1016/j.cell.2020.04.011

Park YJ, Walls AC, Wang Z, Sauer MM, Li W, Tortorici MA, et. al. Structures of MERS-CoV spike glycoprotein in complex with sialoside attachment receptors. Nat. Struct. Mol. Biol. 2019;26(12):1151–1157. doi:10.1038/s41594- 019-0334-7

Bosch BJ, van der Zee R, de Haan CAM, Rottier PJM. The Coronavirus Spike Protein Is a Class I Virus Fusion Protein: Structural and Functional Characterization of the Fusion Core Complex. J. Virol. 2003;77(16):8801– 8811. doi:10.1128/ jvi.77.16.8801-8811.2003

Xia S, Zhu Y, Liu M, Lan Q, Xu W, Wu Y, et al. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell. Mol. Immunol. 2020;17(7):765– 767. doi:10.1038/s41423-020-0374-2

Tang T, Bidon M, Jaimes JA, Whittaker GR, Daniel S. Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antiviral Research. 2020;178:104792. doi:10.1016/j. antiviral.2020.104792

Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260–1263. doi:10.1126/science.aax0902

Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020;181(2):281-292.e6. doi:10.1016/j. cell.2020.02.058

Gui M, Song W, Zhou H, Xu J, Chen S, Xiang Y, et al. Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding. Cell Res. 2017;27(1):119– 129. doi:10.1038/cr.2016.152

Kirchdoerfer RN, Cottrell CA, Wang N, Pallesen J, Yassine HM, Turner HL, et al. Pre-fusion structure of a human coronavirus spike protein. Nature. 2016;531(7592):118– 121. doi:10.1038/ nature17200

Madu IG, Roth SL, Belouzard S, Whittaker GR. Characterization of a Highly Conserved Domain within the Severe Acute Respiratory Syndrome Coronavirus Spike Protein S2 Domain with Characteristics of a Viral Fusion Peptide. J. Virol. 2009;83(15):7411–7421. doi:10.1128/jvi.00079-09

Millet JK, Whittaker GR. Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus Research. 2015;202:120–134. doi:10.1016/j. virusres.2014.11.021

Park JE, Li K, Barlan A, Fehr AR, Perlman S, McCray PB, et al. Proteolytic processing of middle east respiratory syndrome coronavirus spikes expands virus tropism. Proc. Natl. Acad. Sci. U. S. A. 2016;113(43):12262–12267. doi:10.1073/ pnas.1608147113

Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020;581(7807):221– 224. doi:10.1038/s41586-020-2179-y

Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS- CoV-2 by full-length human ACE2. Science. 2020;367(6485):1444–1448. doi:10.1126/ science. abb2762

Yurkovetskiy L, Wang X, Pascal KE, Tomkins- Tinch C, Nyalile TP, Wang Y, et al. Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant. Cell. 2020;183(3):739-751.e8. doi:10.1016/j. cell.2020.09.032

GISAID - Initiative. Accessed August 23, 2020. https://www.gisaid. org/

GISAID - phylodynamics. Accessed December 22, 2020. Disponible en: www.gisaid.org/ epiflu-applications/ phylodynamics/

Bank RPD. RCSB PDB: Homepage. Accessed December 22, 2020. https://www.rcsb.org/

Isabel S, Graña-Miraglia L, Gutierrez JM, Bundalovic-Torma C, Groves HE, Isabel MR, et al. Evolutionary and structural analyses of SARS-CoV-2 D614G spike protein mutation now documented worldwide. Sci. Rep. 2020;10(1):1–20. doi:10.1038/ s41598-020- 70827-z

Zhang L, Wang S, Ren Q, Yang J, Lu Y, Zhang L, et al. Genome-wide variations of SARS-CoV-2 infer evolution. MedRxiv Prepr. 2020:1–17. doi: https://doi. org/10.1101/2020.04.27.20081349

Zhang L, Jackson CB, Mou H, Ojha A, Peng H, Quinlan BD, et al. SARS-CoV-2 spike- protein D614G mutation increases virion spike density and infectivity

Descargas

Publicado

2023-07-20

Cómo citar

Ortega Pérez, C. A., Rivera, N. R., Sandoval López, X., & Hernández Ávila, C. E. (2023). Análisis de la mutación D614G en secuencia del genoma completo de SARS-CoV-2 en El Salvador. La Universidad, 3(3 y 4), 542–556. Recuperado a partir de https://revistas.ues.edu.sv/index.php/launiversidad/article/view/2660