Muestra de saliva para diagnóstico de SARSCoV- 2 por RT-qPCR en población ambulatoria

Authors

Keywords:

SARS-CoV-2, COVID-19, PCR, Saliva, RdRp

Abstract

Introduction. Currently, the detection of SARS-CoV-2 cases in El Salvador has been carried out through RT-PCR by the nasopharyngeal swab sample. Researchers had described the saliva as a biological sample useful for detection of SARS- Cov-2, therefore an opportunity to use it as a feasible alternative for diagnostic. Objective. To evaluate the self-supplied sample of saliva and nasopharyngeal secretion by non-hospitalized patients as an alternative of lower biological risk and less expensive to nasopharyngeal swab for the diagnosis of SARS-CoV-2. Methodology. Patient samples that met the inclusion criteria were processed, amplification was carried out by two protocols already standardized by RT-qPCR of the E and RdRp genes, two of the positive samples by New Generation Sequencing (NSG) for confirmation diagnosis. Positive samples were re-evaluated from their extraction and amplification at the first, second, and fifth months after diagnosis to evaluate the stability of the SARS-CoV-2 genetic material in saliva and nasopharyngeal secretion. Results. The average of positives per 100 tests in El Salvador in the month of November 2020 was approximately 7,05 for every 100 COVID-19 tests performed with swabs, this result is similar to the 8% positivity during the same month of the present study, using as sample a mixture of saliva and pharyngeal secretion self-taken by the patient. The eight positive samples maintained their positivity for the E and RdRp genes at the first, third, and fifth months after the initial diagnosis for both protocols. Similarly, the initial positive Ribonucleic Acid (RNA) eluates remained positive at the first, third, and fifth months. Conclusion. The sample of saliva and pharyngeal secretion and its use for the diagnosis of infection by SARS-CoV-2 could be a low-cost, non-invasive alternative with the same utility as the nasopharyngeal swab for the study of the symptomatic outpatient population or with a community level exposure. Likewise, it could be used for mass screening or sentinel surveillance in settings with limited resources

Downloads

Download data is not yet available.

Author Biographies

Noé Rigoberto Rivera, Universidad de El Salvador

Unidad de Investigaciones Científicas, Facultad de Medicina

Carlos Alexander Ortega Pérez, Universidad de El Salvador

Sección de Virología, Facultad de Medicina

Carlos Enrique Hernández Ávila, Instituto Nacional de Salud

Unidad de Gobernanza

References

Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, et al. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends Microbiol. 2016;24(6):490-502. DOI: 10.1016/j. tim.2016.03.003

Woo PCY, Lau SKP, Lam CSF, Lau CCY, Tsang AKL, Lau JHN, et al. Discovery of Seven Novel Mammalian and Avian Coronaviruses in the Genus Deltacoronavirus Supports Bat Coronaviruses as the Gene Source of Alphacoronavirus and Betacoronavirus and Avian Coronaviruses as the Gene Source of Gammacoronavirus and Deltacoronavi. J Virol. 2012;86(7):3995-4008. DOI: 10.1128/ JVI.06540-11

Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265-9. DOI: 10.1038/s41586- 020-2008-3

Gobierno de El Salvador. Situación Nacional COVID-19. Gobierno de El Salvador. 2021. Fecha de consulta: marzo de 2021. Disponible en: https://covid19.gob.sv/

Organización Mundial de la Salud. Pruebas diagnósticas para el SARS- CoV-2: orientaciones provisionales. Ginebra. Organización Mundial de la Salud. 11 de septiembre de 2020. 26 p. Disponible en: https://apps.who.int/iris/ handle/10665/335830.

John Hopkins University Coronavirus Resource Center. COVID- 19 dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University. John Hopkins University. 2021. Fecha de consulta: marzo 2021. disponible en: https:// www.arcgis.com/apps/dashboards/ bda7594740fd- 40299423467b48e9ecf6

World Health Organization. WHO Coronavirus (COVID-19) Dashboard. World Health Organization. 2021. Switzerland. Fecha de consulta: marzo 2021. Disponible en: https://covid19.who.int/

World Health Organization. Draft landscape and tracker of COVID-19 candidate vaccines. WHO. 2021. Fecha de consulta: marzo 2021 Disponible en: https://www.who.int/ publications/ m/item/draft-landscape-of- covid-19-candidate-vaccines

Randolph HE, Barreiro LB. Herd Immunity: Understanding COVID-19. Immunity. 2020;52(5):737-41. DOI: https://doi. org/ 10.1016/j.immuni.2020.04.012

ElBagoury M, Tolba MM, Nasser HA, Jabbar A, Hutchinson A. The find of COVID-19 vaccine: Challenges and opportunities. J Infect Public Health. 2020;14(3):389-416. DOI: https://doi. org/ 10.1016/j.jiph.2020.12.025

World Health Organization. WHO concept for fair access and equitable allocation of COVID-19 health products. Geneva. WHO. 9 September 2020. 34 p. Disponible en: https://www.who. int/publications/m/item/ fair-allocation-mechanism-for-covid- 19- vaccines-through-the-covax-facility

Herzog LM, Norheim OF, Emanuel EJ, McCoy MS. Covax must go beyond proportional allocation of covid vaccines to ensure fair and equitable access. BMJ. 2021;5;372:m4853. DOI: 10.1136/bmj.m4853.

Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, et al. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends Microbiol . 2016;24(6):490-502. DOI:10.1016/j.tim.2016.03.003

Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol. 2020;92(4):418- 23. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/31967327/

Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, et al. A SARS- CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583(7816):459-68. DOI: 10.1002/ jmv.25681

Hernández Ávila CE, Ortega Pérez CA, Rivera NR, López XS. Análisis de la mutación D614G encontrada en secuencias del genoma completo de SARS-CoV-2 en El Salvador. Alerta. 2021;4(1):72-7. DOI: 10.5377/alerta. v4i1.10683

Kim D, Lee JY, Yang JS, Kim JW, Kim VN, Chang H. The Architecture of SARS-CoV-2 Transcriptome. Cell. 2020;181(4):914- 921. e10. DOI: 10.1016/j.cell.2020.04.011

Stegeman I, Ochodo EA, Guleid F, Holtman GA, Yang B, Davenport C, et al. Routine laboratory testing to determine if a patient has COVID-19 Cochrane Infectious Diseases Group, editor. Cochrane Database Syst. Rev. 2020;11:1465-1858. DOI:10.1002/14651858. CD013787

Sethuraman N, Jeremiah SS, Ryo A. Interpreting Diagnostic Tests for SARS- CoV-2. JAMA. 2020;323(22):2249. DOI:10.1001/ jama.2020.8259

Reina J, Suarez L. Evaluation of different genes in the RT-PCR detection of SARS- CoV-2 in respiratory samples and its evolution in infection. Rev. Esp. Quimioter. 2020;33(4):292-293. DOI: 10.37201/ req/045.2020

Pinilla G, Cruz B CA, Navarrete O J. Diagnóstico molecular de SARS- CoV-2. Nova. 2020;18(35):35-41. DOI: 10.22490/24629448.4184

Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581(7809):465-469. DOI: 10.1038/ s41586-020-2196-x

Leung EC, Chow VC, Lee MK, Lai RW. Deep throat saliva as an alternative diagnostic specimen type for the detection of SARSCoV- 2. J. Med. Virol. 2021;93(1):533-536. DOI: 10.1002/jmv.26258

Takeuchi Y, Furuchi M, Kamimoto A, Honda K, Matsumura H, Kobayashi R. Saliva-based PCR tests for SARS-CoV-2 detection. J. Oral Sci. 2020;62(3):350-351. DOI: 10.2334/josnusd.20-0267

Fakheran O, Dehghannejad M, Khademi A. Saliva as a diagnostic specimen for detection of SARS-CoV-2 in suspected patients: a scoping review. Infect. Dis. Poverty. 2020;9(1):100. DOI: 10.1186/s40249- 020-00728-w

Williams E, Isles N, Chong B, Bond K, Yoga Y, Druce J, et al. Detection of SARS-CoV-2 in saliva: implications for specimen transport and storage. J. Med. Microbiol. 2021;70(2). DOI:10.1099/jmm.0.001285

Ben-Assa N, Naddaf R, Gefen T, Capucha T, Hajjo H, Mandelbaum N, et al. Direct on-the- spot detection of SARS-CoV-2 in patients. Exp. Biol. Med. 2020;245(14):1187-1193. DOI: 10.1177/1535370220941819

Butler-Laporte G, Lawandi A, Schiller I, Yao M, Dendukuri N, McDonald EG, et al. Comparison of Saliva and Nasopharyngeal Swab Nucleic Acid Amplification Testing for Detection of SARS-CoV-2: A Systematic Review and Meta-analysis. JAMA Intern. Med. 2021;181(3):353. DOI: 10.1001/jamainternmed. 2020.8876

Pasomsub E, Watcharananan SP, Boonyawat K, Janchompoo P, Wongtabtim G, Suksuwan W, et al. Saliva sample as a non-invasive specimen for the diagnosis of coronavirus disease 2019: a cross-sectional study. Clin. Microbiol. Infect. 2021;27(2):285. e1-285.e4. DOI: 10.1016/j.cmi.2020.05.001

Uwamino Y, Nagata M, Aoki W, Fujimori Y, Nakagawa T, Yokota H, S, et al. Accuracy and stability of saliva as a sample for reverse transcription PCR detection of SARS-CoV-2. J. Clin. Pathol. 2021;74(1):67-68. DOI: 10.1136/jclinpath-2020-206972

Pasomsub E, Watcharananan SP, Watthanachockchai T, Rakmanee K, Tassaneetrithep B, Kiertiburanakul S, et al. Saliva sample pooling for the detection of SARS-CoV-2. J. Med. Virol. 2021;93(3):1506- 1511. DOI: 10.1002/jmv.26460

Ceron J, Lamy E, Martinez-Subiela S, Lopez- Jornet P, Capela- Silva F, Eckersall P, et al. Use of Saliva for Diagnosis and Monitoring the SARS-CoV-2: A General Perspective. J. Clin. Med. 2020;9(5):1491. DOI: 10.3390/ jcm9051491

Azzi L, Maurino V, Baj A, Dani M, d’Aiuto A, Fasano M, et al. Diagnostic Salivary Tests for SARS-CoV-2. J. Dent. Res. 2021;100(2):115- 123. DOI: 10.1177/0022034520969670

Wyllie AL, Fournier J, Casanovas-Massana A, Campbell M, Tokuyama M, Vijayakumar P, et al. Saliva or Nasopharyngeal Swab Specimens for Detection of SARS-CoV-2. N. Engl. J. Med. 2020;383(13):1283-1286. DOI: 10.1056/NEJMc2016359

Kampf G, Voss A, Scheithauer S. Inactivation of coronaviruses by heat. J Hosp Infect. 2020;105(2):348-9. Available from: https:// doi.org/10.1016/j.jhin.2020.03.025

Rabenau HF, Cinatl J, Morgenstern B, Bauer G, Preiser W, Doerr HW. Stability and inactivation of SARS coronavirus. Med. Microbiol. Immunol. (Berl.). 2005;194(1-2):1- 6. DOI: 10.1007/ s00430-004-0219-0

Published

2023-07-20

How to Cite

Rivera, N. R., Ortega Pérez, C. A., Sandoval López, X., & Hernández Ávila, C. E. (2023). Muestra de saliva para diagnóstico de SARSCoV- 2 por RT-qPCR en población ambulatoria. La Universidad, 3(3 y 4), 557–575. Retrieved from https://revistas.ues.edu.sv/index.php/launiversidad/article/view/2661