Thermostability enhancement of the Pseudomonas fluorescens esterase I by in vivo folding selection in Thermus thermophilus

Authors

Keywords:

Directed evolution, Esterase, In vivo selection,, Protein engineering, hermostability, Thermostability, Thermus thermophilus

Abstract

Prolonged stability is a desired property for the biotechnological application of enzymes since it allows its reutilization, contributing to making biocatalytic processes more economically competitive with respect to chemical synthesis. In this study, we have applied selection by folding interference at high temperature in Thermus thermophilus to obtain thermostable variants of the esterase I from Pseudomonas fluorescens (PFEI). The most thermostable variant (Q11L/A191S) showed a melting temperature (Tm) of 77.3 ± 0.1°C (4.6°C higher than the wild-type) and a half-life of over 13 hr at 65°C (7.9-fold better than the wild-type), with unchanged kinetic parameters. Stabilizing mutations Q11L and A191S were incorporated into PFEI variant L30P, previously described to be enantioselective in the hydrolysis of the (−) -enantiomer of the Vince lactam. The final variant Q11L/L30P/A191S showed a significant improvement in thermal stability (Tm of 80.8 ± 0.1°C and a half-life of 65 min at 75°C), while retaining enantioselectivity (E > 100). Structural studies revealed that A191S establishes a hydrogen bond network between a V-shaped hairpin and the α/β hydrolase domain that leads to higher rigidity and thus would contribute to explaining the increase in stability.

Downloads

Download data is not yet available.

Author Biographies

Diana M. Mate, Autonomous University of Madrid

Department of Molecular Biology, Center of Molecular Biology “Severo Ochoa” (UAM‐ CSIC)

Noé Rigoberto Rivera, Universidad de El Salvador

Department of Molecular Biology, Center of Molecular Biology “Severo Ochoa” (UAM‐ CSIC), Madrid

Esther Sanchez‐Freire, Autonomous University of Madrid

Departamento de Biología Molecular, Centro de Biología Molecular “Severo Ochoa” (UAM‐ CSIC)

Juan A. Ayala, Center of Molecular Biology “Severo Ochoa” (UAM‐CSIC)

Consejo Superior de Investigaciones Científicas

José Berenguer, Center of Molecular Biology “Severo Ochoa” (UAM‐CSIC)

Department of Molecular Biology

Aurelio Hidalgo, Center of Molecular Biology “Severo Ochoa” (UAM‐CSIC)

Department of Molecular Biology

References

Arnold, F. H. (1996). Directed evolution: Creating biocatalysts for the future. Chemical Engineering Science, 51, 5091–5102. https://doi.org/ 10.1016/S0009‐2509(96)00288‐6

Beer, H.‐D., Wohlfahrt, G., Schmid, R. D., & McCarthy, J. E. G. (1996). The folding and activity of the extracellular lipase of Rhizopus oryzae are modulated by a prosequence. Biochemical Journal, 319, 351–359. https://doi.org/10.1042/bj3190351

Bommarius, A. S., & Paye, M. F. (2013). Stabilizing biocatalysts. Chemical Society Reviews, 42, 6534–6565. https://doi. org/10.1039/c3cs60137d

Chautard, H., Blas‐Galindo, E., Menguy, T., Grand’Moursel, L., Cava, F., Berenguer, J., & Delcourt, M. (2007). An activity‐independent selection system of thermostable protein variants. Nature Methods, 4, 919–921. https://doi.org/10.1038/nmeth1090

Cheeseman, J. D., Tocilj, A., Park, S., Schrag, J. D., & Kazlauskas, R. J. (2004). Structure of an aryl esterase from Pseudomonas fluorescens. Acta Crystallographica Section D Biological Crystallography, 60(7), 1237–1243. https://doi.org/10.1107/ S0907444904010522

Chen, C. S., Fujimoto, Y., Girdaukas, G., & Sih, C. J. (1982). Quantitative analyses of biochemical kinetic resolutions of enantiomers. Journal of the American Chemical Society, 104, 7294–7299. https://doi.org/10. 1021/ja00389a064

Choi, K. D., Jeohn, G. H., Rhee, J. S., & Yoo, O. J. (1990). Cloning and nucleotide sequence of an esterase gene from Pseudomonas fluorescens and expression of the gene in Escherichia coli. Agricultural and Biological Chemistry, 54, 2039–2045

Coates, J. A. V., Inggall, H. J., Pearson, B. A., Penn, C. R., Storer, R., Williamson, C., & Cameron, J. M. (1991). Carbovir: The (−) enantiomer is a potent and selective antiviral agent against human immunodeficiency virus in vitro. Antiviral Research, 15, 161–168. https://doi.org/10.1016/0166‐3542(91)90033‐n

Ding, Q. & Kazlauskas, R. J. (2017). Improving Pseudomonas fluorescens esterase for hydrolysis of lactones. Catalysis Science & Technology, 7, 4756–4765. https://doi.org/10.1039/c7cy01770g

Fisher, A. C. (2006). Genetic selection for protein solubility enabled by the folding quality control feature of the twin‐arginine translocation pathway. Protein Science, 15, 449–458. https:// doi.org/10.1110/ps.051902606

Fleming, P. J. & Rose, G. D. (2005). Do all backbone polar groups in proteins form hydrogen bonds? Protein Science, 14, 1911–1917. https://doi.org/10.1110/ps.051454805

Haki, G. & Rakshit, S. K. (2003). Developments in industrially important thermostable enzymes: A review. Bioresource Technology, 89, 17–34. https://doi.org/10.1016/s0960‐8524(03)00033‐6

Huang, J., Jones, B. J., & Kazlauskas, R. J. (2015). Stabilization of an α/β‐hydrolase by introducing proline residues: Salicylic acid binding protein 2 from tobacco. Biochemistry, 54, 4330–4341. https://doi. org/10.1021/acs.biochem.5b00333

Jochens, H., Aerts, D., & Bornscheuer, U. T. (2010). Thermostabilization of an esterase by alignment‐guided focussed directed evolution. Protein Engineering, Design & Selection, 23, 903– 909. https://doi.org/10.1093/ protein/gzq071

Jochens, H., Stiba, K., Savile, C., Fujii, R., Yu, J., Gerassenkov, Bornscheuer, U. T. (2009). Converting an esterase into an epoxide hydrolase. Angewandte Chemie International Edition, 48(19), 3532–3535. https://doi.org/10.1002/anie.v48:19

Jones, B. J., Lim, H. Y., Huang, J., & Kazlauskas, R. J. (2017). Comparison of five protein engineering strategies for stabilizing an α/β‐hydrolase. Biochemistry, 56, 6521–6532. https:// doi.org/10.1021/acs.biochem.7b00571

Khersonsky, O., & Tawfik, D. S. (2010). Enzyme promiscuity: A mechanistic and evolutionary perspective. Annual Review of Biochemistry, 79, 471–505. https://doi.org/10.1146/annurevbiochem‐ 030409‐143718

Krieger, E., & Vriend, G. (2014). YASARA View—molecular graphics for all devices‐from smartphones to workstations. Bioinformatics, 30, 2981–2982. https://doi.org/10.1093/bioinformatics/ btu426

Lavinder, J. J., Hari, S. B., Sullivan, B. J., & Magliery, T. J. (2009). High‐ throughput thermal scanning: A general, rapid dye‐binding thermal shift screen for protein engineering. Journal of the American Chemical Society, 131, 3794–3795. https://doi. org/10.1021/ja8049063

Mate, D. M., Gonzalez‐Perez, D., Mateljak, I., Gomez de Santos, P., Vicente, A. I., & Alcalde, M. (2016). The pocket manual of directed evolution: Tips and tricks. In G. Brahmachari (Ed.), Biotechnology of microbial enzymes: Production, biocatalysis and industrial applications (pp. 185–213). Cambridge, MA: Academic Press Elsevier. https://doi.org/ 10.1016/ b978‐0‐12‐803725‐6.00008‐x

Matthews, B. W., Nicholson, H., & Becktel, W. J. (1987). Enhanced protein thermostability from site‐directed mutations that decrease the entropy of unfolding. Proceedings of the National Academy of Sciences of the United States of America, 84, 6663–6667. https://doi.org/10. 2210/pdb1l23/pdb

Schließmann, A., Hidalgo, A., Berenguer, J., & Bornscheuer, U. T. (2009). Increased enantioselectivity by engineering bottleneck mutants in an esterase from Pseudomonas fluorescens. ChemBioChem, 10, 2920–2923. https://doi.org/10.1002/ cbic.200900563

Schrag, J. D., Li, Y., Cygler, M., Lang, D., Burgdorf, T., Hecht, H.‐J., McPherson, A. (1997). The open conformation of a Pseudomonas lipase. Structure, 5, 187–202. https://doi.org/10.1016/ s0969‐2126(97) 00178‐0

Schymkowitz, J., Borg, J., Stricher, F., Nys, R., Rousseau, F., & Serrano, L. (2005). The FoldX web server: An online force field. Nucleic Acids Research, 33, W382–W388. https://doi. org/10.1093/nar/gki387

Studier, F. W. (2005). Protein production by auto‐induction in high‐density shaking cultures. Protein Expression and Purification, 41, 207–234. https://doi.org/10.1016/j.pep.2005.01.016

Swarts, D. C., Jore, M. M., Westra, E. R., Zhu, Y., Janssen, J. H., Snijders, A. P., van der Oost, J. (2014). DNA‐guided DNA interference by a prokaryotic Argonaute. Nature, 507, 258–261. https://doi.org/10.1038/ nature12971

Takahashi, S., Ueda, M., & Tanaka, A. (1999). Independent production of two molecular forms of a recombinant Rhizopus oryzae lipase by KEX2‐engineered strains of Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 52, 534– 540. https://doi.org/10.1007/s002530051556

Torres, L. L., Schließmann, A., Schmidt, M., Silva‐Martin, N., Hermoso, J. A., Berenguer, J., … Hidalgo, A. (2012). Promiscuous enantioselective (−) ‐ γ‐lactamase activity in the Pseudomonas fluorescens esterase I. Organic and Biomolecular Chemistry, 10, 3388–3392. https://doi.org/10.1039/ c2ob06887g

Waldo, G. S., Standish, B. M., Berendzen, J., & Terwilliger, T. C. (1999). Rapid protein‐folding assay using green fluores cent protein. Nature Biotechnology, 17, 691–695. https://doi. org/10.1038/10904

Watanabe, K., Masuda, T., Ohashi, H., Mihara, H., & Suzuki, Y. (1994). Multiple proline substitutions cumulatively thermostabilize Bacillus cereus ATCC7064 oligo‐1,6‐glucosidase. European Journal of Biochemistry, 226, 277–283. https://doi. org/10.1111/j.1432‐1033. 1994.tb20051.x

Wong, T., Zhurina, D., & Schwaneberg, U. (2006). The diversity challenge in directed protein evolution. CCHTS, 9, 271–288. https://doi.org/10. 2174/138620706776843192

Yin, D. L., Bernhardt, P., Morley, K. L., Jiang, Y., Cheeseman, J. D., Purpero, V., … Kazlauskas, R. J. (2010). Switching catalysis from hydrolysis to perhy- drolysis in Pseudomonas fluorescens esterase. Biochemistry, 49, 1931–1942. https://doi.org/10.1021/ bi9021268

Yin, D. T., Purpero, V. M., Fujii, R., Jing, Q., & Kazlauskas, R. J. (2013). New structural motif for carboxylic acid perhydrolases. Chemistry, 19, 3037–3046. https://doi.org/10.1002/ chem.201202027

Published

2023-07-20

How to Cite

Mate, D. M., Rivera, N. R., Sanchez‐Freire, E., Ayala, J. A., Berenguer, J., & Hidalgo, A. (2023). Thermostability enhancement of the Pseudomonas fluorescens esterase I by in vivo folding selection in Thermus thermophilus. La Universidad, 3(3 y 4), 601–627. Retrieved from https://revistas.ues.edu.sv/index.php/launiversidad/article/view/2663